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The article presents a stable algorithm of solving an integral equation of the first 
kind taking into account the a priori information on the sought solution. 

Statement of the Problem. Some statements of the inverse heat-conduction problem lead 
to the solution of an integral equation of the first kind 

/X l ( (y ,  x ) , ~ ( x ) d x = f ( y ) ,  yC[cv,  d~], (1) 

c x 

which i s  an i n c o r r e c t l y  s t a t e d  p rob lem [ 1 ] .  I t  i s  c h a r a c t e r i s t i c  o f  many r e g u l a r  ( s t a b l e )  
methods o f  s o l v i n g  t h i s  c l a s s  o f  p rob lems  t h a t  we can use  a p r i o r i  i n f o r m a t i o n  on t he  smooth -  
nes s  o f  t he  sough t  s o l u t i o n  ~ ( x )  s p e c i f i e d  i n  d i f f e r e n t  ways.  Moreover ,  i n  many c a s e s  r e -  
searchers have additional qualitative information in regard to ~(x) that characterizes 
different properties of the sought solution (monotonic increase, decrease, concaveness, con- 
vexity, positiveness, boundary conditions, etc. ). 

In the present work we introduce such a priori information on 99(x) by a system of in- 
equalities 

* <~ / (2) 
~(~) (x~)  = d~, i = l  . . . . .  Nr,  

J ~> 

where ~(t~)(x~) i s  t he  d e r i v a t i v e  o f  l . - t h l  o r d e r  o f  t he  f u n c t i o n  ~ ( x )  a t  t he  p o i n t  x~, and as 

t he  r e l a t i o n  we may t a k e  any o f  t h e  t h r e e  r e l a t i o n s  in  t he  b r a c e s .  A c c o r d i n g  to  t he  r e g i s -  
t e r e d  v a l u e s  o f  the  r i g h t - h a n d  s i d e  ~ = f(Yi) + ~i, i =  1 . . . . .  n, we have  t o  c o n s t r u c t  a s o l u t i o n  

s a t i s f y i n g  (2 ) .  S ince  t h e  c o n s t r a i n t s  o f  (2) a r e  o f t e n  of  a q u a l i t a t i v e  d e s c r i p t i v e  n a t u r e  
( i . e . ,  l a r g e r  or  s m a l l e r  t h a n  the  s p e c i f i e d  v a l u e ) ,  we c a l l  i n  c o n f o r m i t y  w i t h  [2] such  a 
solution a descriptive solution of Eq. (i). 

Determination of the Domain of Descriptive Solutions. Let us examine the problem of 
selecting the domain whose elements will approximate the solution of the integral equation 
(i). It is expedient to take the domain P of the piecewise polynomials of m-th degree 

m,z,~ 

[3]. For its determination we introduce two sequences: the strictly increasing sequence 
of real numbers z= {zl, z~ ..... zN~}, where zinc x, zN~d~ , and the sequence of positive 

integers w={vl, v2 ..... vK~}. Then, if the function ~(x) CPm,z,v, then 

,(x)=p~(x), i f  z~x~z~+~;  

jumpz { d h , ( x )  h O, ~ ) k = . O  . . . . .  v ~ - - l ;  
dx ~ i = 2 . . . .  , N z - -  1, 

where P.(x) is a polynomial of m-th degree with real coefficients; jumpzi~(x )=~(z~)-~(zF) 
1 

is the "jump" of  t he  f u n c t i o n  ~(x)  a t  t he  p o i n t  x = z . .  A p p r o x i m a t i o n  o f  the  s o l u t i o n  by 
1 

Institute of Theoretical and Applied Mechanics, Siberian Branch, Academy of Sciences of- 
the USSR, Novosibirsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 5, pp. 
760-765, November, 1983. Original article submitted February 2, 1983. 

1254 0022-0841/83/4505-1254507.50 �9 1984 Plenum Publishing Corporation 



elements of the domain P yields a good approximation for ~(x) (by the corresponding 
m,z,D 

selection of the degree m and of the sequence z) with the required properties of continuity. 

Thus, if we take v. = m, i = 2, ..., N -- i, we obtain a solution with derivatives that are 
1 Z 

continuous in the interval (zl, ZN z) up to and including the (m -- i) interval. If necessary, 

we may take ~o = 0, and may then obtain a solution with a discontinuity of the first kind i 

at the point x = z.. 
1 

An expedient base of the domain P may be the sequence of normalized B-slines (base 
m~z~ 

sp!ines) of m-th degree [3~ 4]. If the nodes {xi), i= l ..... N@m@ | of the B-splines are 

specified via the elements z. by the relations 
1 

x~ ~ x2 ~ �9 �9 �9 ~ xm+l : z~; xtti) : xl(i)+l . . . . .  xz(]+l)-~ z], 
_ . _ (3) 

] = 2 . . . . .  N ~ - -  I; ZN~ = XN@I ~ XN+2 < . . �9 < XN+m+I,  

] Nz--I 

2 where l(])=mn- I ~-~(m@ l--vi); N=m@ 1 @ (m@l--vi), then the following statement is 
i=2  i=2  

correct. 

Statement 1 [3]. The sequence of normalized B-splines B~,m, B2,m, .:., BN,m of the 

m-th degree with nodes (3) is the base of the domain P in the interval (zl, ZNz). 
m,z ,~  

Consequently~ we represent the sought approximation of the solution of ~0(x) by an 
element of the domain P by the combination 

m~g,~ 

N 

~N (x, a) : ~ aMs,,,, (x). 
/= i  

This  a p p r o x i m a t i o n  i s  f u l l y  d e t e r m i n e d  by the  c o e f f i c i e n t s  a . ,  j = 1, . . . ,  N, which  a r e  
3 

c o o r d i n a t e s  o f  t he  e l emen t  o f  t he  domain P in  the  base  o f  t he  B - s p l i n e s .  
m , z ~ )  

A l g o r i t h m  f o r  C a l c u l a t i n g  the  C o e f f i c i e n t s  o f  the  D e s c r i p t i v e  S o l u t i o n .  
s i d e  of  e x p r e s s i o n  (4) may be r e p r e s e n t e d  i n  t he  form 

N 

L, (~)= ~ ajR~ (y), 
1=1 

where the  f u n c t i o n  R.3 (y) = ~K(y, x)Bj ,m(X)dx i s  i n t e r p r e t e d  as  t he  e x p a n s i o n  of  the  k e r n e l  

of  Eq. (1) i n  the  b a s e  o f  t he  B - s p l i n e s .  With s p e c i f i e d  p a r a m e t e r s  m, z ,  u o f  t he  domain 

P t he  v e c t o r  a = { a :  .... a~} of  the  c o e f f i c i e n t s  o f  the  s o l u t i o n w N ( X ,  a) can be d e t e r -  
m ~ z , V  

mined by the least squares method, i.e., from the minimum of the functional 

(4) 

The right-hand 

o Ca) = p, (7 , - -  f,u (yk) 
f = l  

with the constraints (2). The weighting factors Pi are strictly positive, and they charac- 
terize the significance of the i-th measurement. If we introduce into the examination the 

symmetric matrix Q with the elements Qhs=2p~Rk(gi)R~(td~) and the vector q with the projec- 
i=l 

V ~ tions q]: ~P~[~Rs(!h), we can r e p r e s e n t  (I)(a) in t he  form of  t he  q u a d r a t i c  f u n c t i o n a l  

t2 

@ (a) = a"Qa __ 2a~q _}_ N: p~f~.- 2 (5) 

i= I  
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B(li) * I f  we d e n o t e  ci~ = i,,,~ (x~), we c a n  w r i t e  t h e  c o n s t r a i n t s  (2 )  i n  t h e  f o r m  o f  a s y s t e m  o f  

e q u a l i t i e s  and  i n e q u a l i t •  

N 

gi (a )  = y_~cija j - d  i =  O, i== 1 . . . .  , rtr; 
/=1 

N 

g ~ ( a ) = 6 ~ ( ~ c i , a j - - d ~ ) ~ O ,  i = n r q - 1 ,  . . . ,  N~, 
i=1 

(6) 

where n is the number of constraints in the form of equalities; the factor ~. assumes the 
r l 

value 1 if the i-th constraint has~, and ~. = -I if it has~. This system determines in 
l 

d whose points satis- the N-dimensional domain ~N of coefficients a. some permissible domain ~N 
J 

fy the inequalities (6). 

Thus the problem of determining the coefficients of the descriptive solution reduced 

~,~d to the problem of quadratic programming: to find the vector a ~N furnishing to the func- 

tional (5) the minimum, i.e., 

(a**) = inf �9 (a). (7)  
a ~  

d contains at least one point. Otherwise there is It is natural to assume that the domain ~N 

no sense in constructing the descriptive solution. 

The problem of quadratic programming was solved by the method of penalty functions. 
Without explaining the method itself (see [5]), we want to point out that the basic idea 
consists in the approximate reduction of problem (7) to a sequence of minimization problems 
without constraints on some auxiliary functional. As the latter we took F(a, y) = ~(a) + 
yG(a), where y is a penalty factor, G(a) is a penalty functional of the form 

n r Nr 

G (a) : ~ o)~ Ig~ (a)[ z -~- ~ (o~ [max (0, g~ (a))] ~, 
i=1 i : n r +  i 

which is strictly larger than zero if the vector a does not belong to the permissible domain 
d d 

and equal to zero (and consequently, F(a, y) = ~(a)) if a E ~N" 
g~N ' 

Statement 2 [6]. The minimum of the functional F(a, y) with any fixed magnitude 

Y E (0, co) is attained at the unique point a*. The limit point a* of the sequence a* with y ~ y 

y + ~ is the solution of the problem (7), and the values of ~(a*) increase monotonically, 
Y 

and |im(D(~)=(D(a**) when y + ~. 

Statement 3. With fixed parameters m, z, w and simultaneous constraints (6) there 

exists a unique descriptive solution ~N(X, a**) of Eq. (I) in the domain P 
m,z,w 

Selection of the Dimensionality of the Domain of Descriptive Solutions. The dimensional- 
ity N (number of base splines) in the given method is the singular parameter of regularization 
of the obtained solution. It has to be matched with the noise level of the measurement. The 
dimensionality Nopt, which minimizes the rms error of approximating the exact solution ~(x) 

by the element ~N(X, a) among all other values of N with the given noise level, can be deter- 

mined as the optimum dimensionality of the domain P . Below we present two methods of 
m,z,~ 

evaluating N with different a priori information on the statistics of the measurement 
noise, opt 
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/ 3 s x ,y  

Fig. i. Results of the computing 
experiment : i) exact solution ~0 (x) ; 
2) exact right-hand side f(y) of the 
integral equation; 3) measured values 
f''1' 4) rms solution ~N(X, a*)', 5) 

descriptive solution ON(X , a**). 

i. It is assumed that the measurement noise ~i has a zero mean and the known scatter 
n 

o. 2. We introduce into the examination the bilinear form R(N)=YTie~(N)/o~, where ei(N)=[i--fiv(y 0 
1 ' ~ 1  

is the discrepancy of the i-th measurement. The value N R for which 

R (NR) E [OM (~/2), 0M (i - -  [~/2)], 
(8) 

is the evaluation of the optimum dimensionality Nop t. The boundary points 0M(B/2) , OM(I--B/2) 

of the interval are the quantiles of the x2-distribution with M = n -- N + N A degrees of free- 

dom of the levels 6/2, 1 -- B/2, respectively; N A is the number of constraints of system (6) 

converted by vector a** into identities with specified accuracy. Condition (8) follows from 
the criterion of optimality of the approximation by experimental information [7]. 

2. It is assumed that the measurement noise has zero mean and unknown scatter. In this 
case the evaluation of Nop t is the magnitude N V which furnishes the minimum to the functional 

- - -  e~ (N 1 
n n 

This method is a generalization of the method of cross-validation [8] to the case when 
the sought solution has the form (4). 

Program Realization and Results of the Computing Experiment. The explained algorithm 
for constructing the descriptive solution was realized in the form of a complex of subpro- 
grams written in FORTRAN-IV. The complex envisages the detection and diagnosing of errors in 
the initial data and also of errors arising in the course of the computing process of 
constructing the descriptive solution. We will dwell on some results of the computing ex- 
periment with this complex of subprograms. 

The solution of the integral equation with the kernel K(y, x) = I/(i + (y-~x) 2) was 

specified by the downward convex function ~(x)=exp(--(x-- lO)~/lO00) +20exp(--(x--7)2/4) ,x~[1;5.5] .  

The values of the right-hand side f(yi ), i = I, ..., 60, were distorted by the numbers with 

normal distribution and with scatter o~ = (elf(yi)I/2.5)~, where ~ = 0.25 is the relative noise. 
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From the initial data {Yi, f~, pi=l/r we constructed two solutions: 

~(x, a**) satisfying the constraints 

q~(D=o,92, ,~"(zj)~>o, i = 1  . . . . .  N,; 

the descriptive solution 

(9) 

the rms solution ~N(x, a*) whose coefficients were determined from the minimum of (6) with- 
out taking (9) into account. For both solutions the elements of the sequence z were speci- 

fied by the values {0.5; 1.5; 2.5; 3.5; 4.5; 5.0; 5.5; 6.1}, N = 8, m = 3. It can be 
z 

demonstrated that for cubic B-splines the downward complexity of the solution ~N(~, a**) in 

the interval [i; 5.5] follows from the fulfillment of (9). Figure 1 shows the functions 

~(x), f(y) and the solutions ~N(x. a*), ~x(x, a**). An analysis of this and of other computing 

experiments shows that if reliable a priori information on the sought solution is taken into 

account, it greatly improves the accuracy of the solution of an integral equation of the 
first kind. 

NOTATION 

(x), sought solution of the integral equation; K(y, x), kernel of the integral equa- 

tion; f(y), exact right-hand side of the integral equation; ~(/i)(x~) (i = i, ..., Nr) , 
I 

derivative of /.-th order of the function ~(x) at the point x~; di(i = i, ..., Nr) , con- 
i 

straints imposed on the values ~(/i)(x); fi(i = i, ..., n), measured values of the right- 

hand side of the integral equation; ~i' measurement noise', Pm,z,w, domain of the descriptive 

solutions" xi(i = i, ..., N + m + I) nodes of the B-spline B. of the m-th degree; N, 
' ' j,m 

dimensionality of the domain of the solutions; aj, coefficients of the solution in the base 

of the B-splines; )(a), quadratic functional; Pi' weighting factors contained in ~(a); 

d for the coefficients gi(a) (i = i, ..., N~ ,) linear form determining the permissible domain ~N 

a.;j Nopt, optimum dimensionality of the domain of the solutions; el(N) (i = i, ..., n) 

discrepancy of the i-th measurement; ~N(X, a*), rms solution; @N(X, a**), descriptive solu- 

tion of the integral equation. 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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